
Fortran

59

The Fortran language can treat characters as single character or contiguous strings.

Characters could be any symbol taken from the basic character set, i.e., from the letters,
the decimal digits, the underscore, and 21 special characters.

A character constant is a fixed valued character string.

The intrinsic data type character stores characters and strings. The length of the string
can be specified by len specifier. If no length is specified, it is 1. You can refer individual
characters within a string referring by position; the left most character is at position 1.

Character Declaration
Declaring a character type data is same as other variables:

type-specifier :: variable_name

For example,

character :: reply, sex

you can assign a value like,

reply = ‘N’

sex = ‘F’

The following example demonstrates declaration and use of character data type:

program hello

implicit none

 character(len=15) :: surname, firstname

 character(len=6) :: title

 character(len=25)::greetings

 title = 'Mr. '

 firstname = 'Rowan '

 surname = 'Atkinson'

 greetings = 'A big hello from Mr. Beans'

 print *, 'Here is ', title, firstname, surname

11. Fortran ─ Characters

Fortran

60

 print *, greetings

end program hello

When you compile and execute the above program it produces the following result:

Here is Mr. Rowan Atkinson

A big hello from Mr. Bean

Concatenation of Characters
The concatenation operator //, concatenates characters.

The following example demonstrates this:

program hello

implicit none

 character(len=15) :: surname, firstname

 character(len=6) :: title

 character(len=40):: name

 character(len=25)::greetings

 title = 'Mr. '

 firstname = 'Rowan '

 surname = 'Atkinson'

 name = title//firstname//surname

 greetings = 'A big hello from Mr. Beans'

 print *, 'Here is ', name

 print *, greetings

end program hello

When you compile and execute the above program it produces the following result:

Here is Mr.Rowan Atkinson

A big hello from Mr.Bean

Fortran

61

Some Character Functions
The following table shows some commonly used character functions along with the
description:

Function Description

len(string) It returns the length of a character string

index(string,sustring) It finds the location of a substring in another string, returns 0
if not found.

achar(int) It converts an integer into a character

iachar(c) It converts a character into an integer

trim(string) It returns the string with the trailing blanks removed.

scan(string, chars) It searches the "string" from left to right (unless back=.true.)
for the first occurrence of any character contained in "chars".
It returns an integer giving the position of that character, or
zero if none of the characters in "chars" have been found.

verify(string, chars) It scans the "string" from left to right (unless back=.true.) for
the first occurrence of any character not contained in "chars".
It returns an integer giving the position of that character, or
zero if only the characters in "chars" have been found

adjustl(string) It left justifies characters contained in the "string"

adjustr(string) It right justifies characters contained in the "string"

len_trim(string) It returns an integer equal to the length of "string"
(len(string)) minus the number of trailing blanks

repeat(string,ncopy) It returns a string with length equal to "ncopy" times the
length of "string", and containing "ncopy" concatenated copies
of "string"

Fortran

62

Example 1
This example shows the use of the index function:

program testingChars

implicit none

 character (80) :: text

 integer :: i

 text = 'The intrinsic data type character stores characters and strings.'

 i=index(text,'character')

 if (i /= 0) then

print *, ' The word character found at position ',i

print *, ' in text: ', text

 end if

end program testingChars

When you compile and execute the above program it produces the following result:

The word character found at position 25

in text : The intrinsic data type character stores characters and strings.

Example 2
This example demonstrates the use of the trim function:

program hello

implicit none

 character(len=15) :: surname, firstname

 character(len=6) :: title

 character(len=25)::greetings

 title = 'Mr.'

 firstname = 'Rowan'

 surname = 'Atkinson'

 print *, 'Here is', title, firstname, surname

Fortran

63

 print *, 'Here is', trim(title),' ',trim(firstname),' ', trim(surname)

end program hello

When you compile and execute the above program, it produces the following result:

Here is Mr. Rowan Atkinson

Here is Mr. Rowan Atkinson

Example 3
This example demonstrates the use of achar function

program testingChars

implicit none

 character:: ch

 integer:: i

 do i=65, 90

ch = achar(i)

print*, i, ' ', ch

 end do

end program testingChars

When you compile and execute the above program it produces the following result:

65 A

66 B

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

Fortran

64

77 M

78 N

79 O

80 P

81 Q

82 R

83 S

84 T

85 U

86 V

87 W

88 X

89 Y

90 Z

Checking Lexical Order of Characters
The following functions determine the lexical sequence of characters:

Function Description

lle(char, char) Compares whether the first character is lexically less than or equal to
the second

lge(char, char) Compares whether the first character is lexically greater than or
equal to the second

lgt(char, char) Compares whether the first character is lexically greater than the
second

llt(char, char) Compares whether the first character is lexically less than the second

Example 4
The following function demonstrates the use:

Fortran

65

program testingChars

implicit none

 character:: a, b, c

 a = 'A'

 b = 'a'

 c = 'B'

 if(lgt(a,b)) then

print *, 'A is lexically greater than a'

 else

print *, 'a is lexically greater than A'

 end if

 if(lgt(a,c)) then

print *, 'A is lexically greater than B'

 else

print *, 'B is lexically greater than A'

 end if

 if(llt(a,b)) then

print *, 'A is lexically less than a'

 end if

 if(llt(a,c)) then

print *, 'A is lexically less than B'

 end if

end program testingChars

When you compile and execute the above program it produces the following result:

a is lexically greater than A

B is lexically greater than A

A is lexically less than a

A is lexically less than B

Fortran

66

The Fortran language can treat characters as single character or contiguous strings.

A character string may be only one character in length, or it could even be of zero
length. In Fortran, character constants are given between a pair of double or single
quotes.

The intrinsic data type character stores characters and strings. The length of the string
can be specified by len specifier. If no length is specified, it is 1. You can refer
individual characters within a string referring by position; the left most character is at
position 1.

String Declaration
Declaring a string is same as other variables:

type-specifier :: variable_name

For example,

Character(len=20) :: firstname, surname

you can assign a value like,

character (len=40) :: name

name = “Zara Ali”

The following example demonstrates declaration and use of character data type:

program hello

implicit none

 character(len=15) :: surname, firstname

 character(len=6) :: title

 character(len=25)::greetings

 title = 'Mr.'

 firstname = 'Rowan'

 surname = 'Atkinson'

 greetings = 'A big hello from Mr. Beans'

 print *, 'Here is', title, firstname, surname

12. Fortran ─ Strings

Fortran

67

 print *, greetings

end program hello

When you compile and execute the above program it produces the following result:

Here is Mr. Rowan Atkinson

A big hello from Mr. Bean

String Concatenation
The concatenation operator //, concatenates strings.

The following example demonstrates this:

program hello

implicit none

 character(len=15) :: surname, firstname

 character(len=6) :: title

 character(len=40):: name

 character(len=25)::greetings

 title = 'Mr.'

 firstname = 'Rowan'

 surname = 'Atkinson'

 name = title//firstname//surname

 greetings = 'A big hello from Mr. Beans'

 print *, 'Here is', name

 print *, greetings

end program hello

When you compile and execute the above program it produces the following result:

Here is Mr. Rowan Atkinson

A big hello from Mr. Bean

Fortran

68

Extracting Substrings
In Fortran, you can extract a substring from a string by indexing the string, giving the
start and the end index of the substring in a pair of brackets. This is called extent
specifier.

The following example shows how to extract the substring ‘world’ from the string ‘hello
world’:

program subString

 character(len=11)::hello

 hello = "Hello World"

 print*, hello(7:11)

end program subString

When you compile and execute the above program it produces the following result:

World

Example
The following example uses the date_and_time function to give the date and time
string. We use extent specifiers to extract the year, date, month, hour, minutes and
second information separately.

program datetime

implicit none

 character(len = 8) :: dateinfo ! ccyymmdd

 character(len = 4) :: year, month*2, day*2

 character(len = 10) :: timeinfo ! hhmmss.sss

 character(len = 2) :: hour, minute, second*6

 call date_and_time(dateinfo, timeinfo)

! let’s break dateinfo into year, month and day.

! dateinfo has a form of ccyymmdd, where cc = century, yy = year

! mm = month and dd = day

Fortran

69

 year = dateinfo(1:4)

 month = dateinfo(5:6)

 day = dateinfo(7:8)

 print*, 'Date String:', dateinfo

 print*, 'Year:', year

 print *,'Month:', month

 print *,'Day:', day

! let’s break timeinfo into hour, minute and second.

! timeinfo has a form of hhmmss.sss, where h = hour, m = minute

! and s = second

 hour = timeinfo(1:2)

 minute = timeinfo(3:4)

 second = timeinfo(5:10)

 print*, 'Time String:', timeinfo

 print*, 'Hour:', hour

 print*, 'Minute:', minute

 print*, 'Second:', second

end program datetime

When you compile and execute the above program, it gives the detailed date and time
information:

Date String: 20140803

 Year: 2014

 Month: 08

 Day: 03

 Time String: 075835.466

 Hour: 07

 Minute: 58

 Second: 35.466

Fortran

70

Trimming Strings
The trim function takes a string, and returns the input string after removing all trailing
blanks.

Example

program trimString

implicit none

 character (len=*), parameter :: fname="Susanne", sname="Rizwan"

 character (len=20) :: fullname

 fullname=fname//" "//sname !concatenating the strings

 print*,fullname,", the beautiful dancer from the east!"

 print*,trim(fullname),", the beautiful dancer from the east!"

end program trimString

When you compile and execute the above program it produces the following result:

Susanne Rizwan, the beautiful dancer from the east!

Susanne Rizwan, the beautiful dancer from the east!

Left and Right Adjustment of Strings
The function adjustl takes a string and returns it by removing the leading blanks and
appending them as trailing blanks.

The function adjustr takes a string and returns it by removing the trailing blanks and
appending them as leading blanks.

Example

program hello

implicit none

 character(len=15) :: surname, firstname

 character(len=6) :: title

 character(len=40):: name

 character(len=25):: greetings

Fortran

71

 title = 'Mr. '

 firstname = 'Rowan'

 surname = 'Atkinson'

 greetings = 'A big hello from Mr. Beans'

 name = adjustl(title)//adjustl(firstname)//adjustl(surname)

 print *, 'Here is', name

 print *, greetings

 name = adjustr(title)//adjustr(firstname)//adjustr(surname)

 print *, 'Here is', name

 print *, greetings

 name = trim(title)//trim(firstname)//trim(surname)

 print *, 'Here is', name

 print *, greetings

end program hello

When you compile and execute the above program it produces the following result:

Here is Mr. Rowan Atkinson

A big hello from Mr. Bean

Here is Mr. Rowan Atkinson

A big hello from Mr. Bean

Here is Mr.RowanAtkinson

A big hello from Mr. Bean

Searching for a Substring in a String
The index function takes two strings and checks if the second string is a substring of the
first string. If the second argument is a substring of the first argument, then it returns
an integer which is the starting index of the second string in the first string, else it
returns zero.

Example

Fortran

72

program hello

implicit none

 character(len=30) :: myString

 character(len=10) :: testString

 myString = 'This is a test'

 testString = 'test'

 if(index(myString, testString) == 0)then

print *, 'test is not found'

 else

print *, 'test is found at index: ', index(myString, testString)

 end if

end program hello

When you compile and execute the above program, it produces the following result:

test is found at index: 11

