
Fortran 

127 

A procedure is a group of statements that perform a well-defined task and can be 
invoked from your program. Information (or data) is passed to the calling program, to 
the procedure as arguments. 

There are two types of procedures: 

Functions

Subroutines

Function
A function is a procedure that returns a single quantity. A function should not modify its 
arguments. 

The returned quantity is known as function value, and it is denoted by the function 
name. 

Syntax:
Syntax for a function is as follows: 

function name(arg1, arg2, ....) 

   [declarations, including those for the arguments] 

   [executable statements] 

end function [name] 

The following example demonstrates a function named area_of_circle. It calculates the 
area of a circle with radius r. 

program calling_func 

   real :: a 

   a = area_of_circle(2.0) 

   Print *, "The area of a circle with radius 2.0 is" 

   Print *, a 

end program calling_func 

! this function computes the area of a circle with radius r

19. Fortran ─ Procedures



Fortran 

128 

function area_of_circle (r)  

! function result

implicit none

! dummy arguments

   real :: area_of_circle 

! local variables

   real :: r 

   real :: pi 

   pi = 4 * atan (1.0)   

   area_of_circle = pi * r**2 

end function area_of_circle 

When you compile and execute the above program, it produces the following result: 

The area of a circle with radius 2.0 is 

   12.5663710 

Please note that: 

You must specify implicit none in both the main program as well as the
procedure.

The argument r in the called function is called dummy argument.

The result Option
If you want the returned value to be stored in some other name than the function name, 
you can use the result option. 

You can specify the return variable name as: 

function name(arg1, arg2, ....) result (return_var_name)  

   [declarations, including those for the arguments]   

   [executable statements] 

end function [name] 



Fortran 

129 

Subroutine
A subroutine does not return a value, however it can modify its arguments. 

Syntax

subroutine name(arg1, arg2, ....) 

   [declarations, including those for the arguments] 

   [executable statements] 

end subroutine [name] 

Calling a Subroutine
You need to invoke a subroutine using the call statement. 

The following example demonstrates the definition and use of a subroutine swap, that 
changes the values of its arguments. 

program calling_func 

implicit none 

   real :: a, b 

   a = 2.0 

   b = 3.0 

   Print *, "Before calling swap" 

   Print *, "a = ", a 

   Print *, "b = ", b 

   call swap(a, b) 

   Print *, "After calling swap" 

   Print *, "a = ", a 

   Print *, "b = ", b 

end program calling_func 

subroutine swap(x, y) 

implicit none 



Fortran 

130 

   real :: x, y, temp 

   temp = x 

   x = y 

   y = temp 

end subroutine swap 

When you compile and execute the above program, it produces the following result: 

Before calling swap 

a = 2.00000000    

b = 3.00000000    

After calling swap 

a = 3.00000000    

b = 2.00000000   

Specifying the Intent of the Arguments
The intent attribute allows you to specify the intention with which arguments are used in 
the procedure. The following table provides the values of the intent attribute: 

Value Used as Explanation 

in intent(in) Used as input values, not changed in the function 

out intent(out) Used as output value, they are overwritten 

inout intent(inout) Arguments are both used and overwritten 

The following example demonstrates the concept: 

program calling_func 

implicit none 

   real :: x, y, z, disc 

   x= 1.0 



Fortran 

131 

   y = 5.0 

   z = 2.0 

   call intent_example(x, y, z, disc) 

   Print *, "The value of the discriminant is" 

   Print *, disc 

end program calling_func 

subroutine intent_example (a, b, c, d)   

implicit none   

! dummy arguments

   real, intent (in) :: a 

   real, intent (in) :: b 

   real, intent (in) :: c 

   real, intent (out) :: d 

   d = b * b - 4.0 * a * c 

end subroutine intent_example 

When you compile and execute the above program, it produces the following result: 

The value of the discriminant is 

   17.0000000 

Recursive Procedures
Recursion occurs when a programming languages allows you to call a function inside the 
same function. It is called recursive call of the function. 

When a procedure calls itself, directly or indirectly, is called a recursive procedure. You 
should declare this type of procedures by preceding the word recursive before its 
declaration. 

When a function is used recursively, the result option has to be used. 



Fortran 

132 

Following is an example, which calculates factorial for a given number using a recursive 
procedure: 

program calling_func 

implicit none 

   integer :: i, f 

   i = 15 

   Print *, "The value of factorial 15 is" 

   f = myfactorial(15) 

   Print *, f 

end program calling_func 

! computes the factorial of n (n!)

recursive function myfactorial (n) result (fac) 

! function result

implicit none     

! dummy arguments

   integer :: fac   

   integer, intent (in) :: n 

   select case (n) 

case (0:1) 

 fac = 1   

case default 

 fac = n * myfactorial (n-1) 

   end select  

end function myfactorial 



Fortran 

133 

Internal Procedures
When a procedure is contained within a program, it is called the internal procedure of 
the program. The syntax for containing an internal procedure is as follows: 

program program_name  

   implicit none 

! type declaration statements

! executable statements

   . . . 

   contains 

! internal procedures

   . . .   

end program program_name 

The following example demonstrates the concept: 

program mainprog  

implicit none  

   real :: a, b 

   a = 2.0 

   b = 3.0 

   Print *, "Before calling swap" 

   Print *, "a = ", a 

   Print *, "b = ", b 

   call swap(a, b) 

   Print *, "After calling swap" 

   Print *, "a = ", a 

   Print *, "b = ", b 

contains   

   subroutine swap(x, y)     

real :: x, y, temp 

temp = x  

x = y   



Fortran 

134 

y = temp   

   end subroutine swap 

end program mainprog 

When you compile and execute the above program, it produces the following result: 

Before calling swap 

a = 2.00000000    

b = 3.00000000    

After calling swap 

a = 3.00000000    

b = 2.00000000   


