

ترمودینامیک Thermodynamics

کاربردها Applications

What is Thermodynamics?

- Thermodynamics is a branch of physics which deals with the energy and work of a system.
- It was born in the 19th century as scientists were first discovering how to build and operate steam engines.
- Thermodynamics deals only with the large scale response of a system which we can observe and measure in experiments.
- Small scale gas interactions are described by the kinetic theory of gases.
- The methods complement each other; some principles are more easily understood in terms of thermodynamics and some principles are more easily explained by kinetic theory.

Thermodynamics Concepts

Thermodynamics Concepts

- Work- equal to the constant force exerted on an object in the direction of motion times the object's displacement
- Energy- the ability of an object to produce change in itself or the world around it
- <u>Kinetic energy</u>- equal to 1/2 times the mass of an object multiplied by the velocity of an object squared
- Joule- unit of energy equal to a Newton times a meter
- Power- equal to work done divided by the time it takes to do the work
- Watt- unit of power equal to 1 Joule/1 second
- Rotational kinetic energy equal to 1/2 times the moment of inertia of the object times the rotational velocity squared
- Gravitational potential energy equal to the product of its mass, the acceleration due to gravity, and the distance from the reference level
- <u>Reference level</u>- the position where potential energy is defined to be zero
- Elastic potential energy stored energy is an object with tension or elastic qualities
- <u>Law of conservation of energy</u>- in a closed system, energy can not be created or destroyed
- Mechanical energy sum of kinetic energy and gravitational potential energy of a system
- Thermal energy heat energy
- Elastic collision collision in which kinetic energy does not change
- <u>Inelastic collision</u>- collision in which kinetics energy increases

Schematic diagram of a steam power plant.

The Esbjerg, Denmark, power station

Schematic diagram of a power plant.

Schematic diagram of a shipboard nuclear propulsion system.

Nimitz-class supercarriers

USS Enterprise

Schematic arrangement of an ion-exchange membrane type of fuel cell.

Fuel cell technology explained

A refrigeration unit for an air-conditioning system.

(a) A thermoelectric refrigerator. (b) A thermoelectric power generation device.

simplified diagram of a liquid oxygen plant.

43 MW gas turbine. (Courtesy General Electric Corporation.)

(a) Simplified schematic diagram of a liquid-propellant rocket engine. (b) Photo of the NASA space shuttle's main engine.

Water wheel

Water turbine

Windmill

Wind turbine -Blades Rotor Low-speed shaft Pitch system Gear box Controller Anemometer Brake-Yaw drive Wind direction Wind vane Nacelle Yaw motor-High-speed shaft Tower → Generator

Wind energy

Hand pump

Motor pump

Piping

Heat exchanging

U-tube heat exchanger

brazed plate heat exchanger

Heat, Ventilation and Air Conditioning (HVAC)

Thrust

Internal combustion engines

Turbo machinery

A simple mistake: Mars Climate Orbiter

• On September 23, 1999, communication with the spacecraft was lost as the spacecraft went into orbital insertion, due to ground-based computer software which produced output in non-SI units of pound-seconds (lbf s) instead of the SI units of newton-seconds (N s) specified in the contract between NASA and Lockheed. The spacecraft encountered Mars on a trajectory that brought it too close to the planet, causing it to pass through the upper atmosphere and disintegrate.

Mars Climate Orbiter

